HOME   AG LIBRARY CATALOG   TABLE OF CONTENTS   NEXT CHAPTER



ROOT DEVELOPMENT OF
VEGETABLE CROPS


CHAPTER I
INTRODUCTION

  The plant is the most important agent in crop production. Soils, cultivation, fertilizers, irrigation, and other factors, in a sense, are all more or less subsidiary. Soils are modified by cultivation, by adding manure or other fertilizers, by drainage or irrigation, and in other ways with the express purpose of changing the environment so as to stimulate plants to increased productivity. Hence, it is not surprising that from time immemorial extended observations and, later, experiments have been made upon the aerial growth of crops under varying conditions. In fact an almost bewildering array of literature has resulted. But quite the converse is true of the underground parts. The root development of vegetable crops has received relatively little attention, and indeed accurate information is rarely to be found. The roots of plants are the least known, least understood, and least appreciated part of the plant. This is undoubtedly due to the fact that they are effectually hidden from sight. Notwithstanding the extreme difficulty and tediousness of laying the roots bare for study, it is not only remarkable but also extremely unfortunate that such investigations have been so long neglected.

  It clearly seems that a thorough understanding of the activities of plants both aboveground and belowground and the ways in which these activities are favorably or unfavorably modified by various cultural practices should be basic for scientific crop production. Yet almost countless field experiments, selections, breeding, and testing of varieties, etc. have been carried on in all parts of the world with little or no knowledge as to the behavior of that very essential portion of the plant, the absorbing system. Similarly, in the study of soils, the greatest attention is given to the problems of the physics, chemistry, and bacteriology of this substratum and rather largely to the cultivated portion of the surface only. The soil, barring the living organisms which it supports, is perhaps the most complex, the most interesting, and the most wonderful thing in nature. Surely it should receive thorough investigation. But a study of the soil and the way in which its various relations affect yield without a consideration of the essential, intermediary absorbing system is more or less empirical. A complete, scientific understanding of the soils-crops relations cannot be attained until the mechanism by which the soil and the plant are brought into favorable relationships, i.e., the root system, is also understood.

   The student of plant production should have a vivid, mental picture of the plant as a whole. It is just as much of a biological unit as is an animal. The animal is visible as an entity and behaves as one. If any part is injured, reactions and disturbance of the whole organism are expected. But in the plant, our mental conception is blurred by the fact that one of the most important structures is underground. Nor is the plant usually treated as an entity; it is often mutilated by pruning, cutting, and injuring the root system, frequently without much regard to the effect upon the remaining portion. 61

  Modifying the Root Environment.--In both field and garden the part of the plant environment that lies beneath the surface of the soil is more under the control of the plant grower than is the part which lies above. He can do relatively little toward changing the composition, temperature, or humidity of the air, or the amount of light. But much may be done by proper cultivation, fertilizing, irrigating, draining, etc. to influence the structure, fertility, aeration, and temperature of the soil. Thus, a thorough understanding of the roots of plants and the ways in which they are affected by the properties of the soil in which they grow is of the utmost practical importance. Before other than an empirical answer can be given to the questions as to what are the best methods of preparing the land for any crop, the type of cultivation to be employed, the best time or method of applying fertilizers, the application and amount of water of irrigation, kind of crop rotations, and many other questions, something must be known of the character and activities of the roots that absorb water and nutrients for the plant and the position that they occupy in the soil.

  Adaptation of Roots to Environment.--By more or less profound modifications of their root system, many plants become adapted to different soil environments, others are much less susceptible to change. Among forest trees, for example, the initial or juvenile root system of each species follows a fixed course of development and maintains a characteristic form for a rather definite period of time following germination. The tendency to change when subjected to different external conditions becomes more pronounced as the seedlings become older. But some species thus subjected exhibit much earlier tendencies to change than others and a widely different degree of flexibility is also shown. Hence, certain species, e.g., red maple (Acer rubrum), because of the great plasticity of their root systems, are able to survive, at least for a time, in various situations from swamps to dry uplands. The roots of others such as bald cypress (Taxodium distichum) are so inflexible that they can grow only under certain favorable conditions and their distribution is thus greatly limited. 160,161,48 Great variability also occurs in the rooting habits of fruit trees. 40,131,142
Native herbaceous species usually show great plasticity of root habit, successfully adapting themselves to considerable differences in soil environment (Fig. 1). A few seem to be quite fixed in their habit of root growth. 167,168


Fig. 1.--A spurge (Euphorbia montana) showing differences in root habit resulting from environment. The plant on the left was excavated in the Great Plains of Colorado. Maximum branching occurred in the third and fourth foot, although the taproot reached a depth of more than 7 feet. The plant on the right, with a shallower but much more finely branched root system, was excavated from a "half-gravel slide" in the Rocky Mountains of Colorado.

  Continued study has shown that many field crops, although governed first of all by the hereditary growth characters of the species or variety, are usually subject to change. Certain varieties are able to adapt their root systems to unfavorable conditions much more readily than others. 174,86,87

   The wide range in soil and agricultural conditions under which vegetable crops are grown renders them particularly suitable both for the investigations of their root habits and also for a study of the agricultural significance of the differences encountered.

  Root Adaptation and Crop Production.--Enough work has been done to show clearly that among garden crops root adaptations frequently occur. These will be pointed out in the following chapters, although a mere beginning has been made. The field is enormously large and difficult but one rich in possibilities. It seems entirely probable that some of the best-yielding crops are able to outstrip others largely because of their greater efficiency in securing a greater and more constant supply of water and nutrients. On the other hand, the failure of a crop to thrive in a particular soil may be due to a lack of adaptation of its root system to the environment imposed upon it. Both of these conditions are illustrated by the growth of flax in India.

  The agriculture in many of these areas is ancient, there have been few innovations, and the soil conditions have had time to impress themselves on the varieties of crops cultivated. A condition of equilibrium between the type of plant and the soil has been obtained, as there has been ample time for the operation of natural selection. When we compare the root system of linseed from the black-soil areas with that of the varieties grown on the Gangetic alluvium, striking differences appear. The roots produced on the black soils (of the Peninsula) are deep, somewhat sparse, and are well adapted to ripen the plant quickly with the minimum of moisture. The type of gearing fits the soil. On the alluvium, where moisture is more abundant and where the aeration of the subsoil is poor, the root system is superficial but at the same time well developed. On the intermediate types of soil . . . linseed produces a type of root about halfway between that of the black soils and of the alluvium. Once more the root system is found to fit the soil type. Further when we grow side by side on the alluvium these three classes of linseed, there is little or no adaptation of the roots to the new conditions, but the three types behave very much as they would in their native habitat. The deep, sparse root system of the black soil areas is developed in the alluvium, although it is fatal to the well-being of the crop. When, the experiment is reversed and the types which suit the alluvium are grown on the black soils, there is again little or no adaptation to fit the new conditions. The linseed crop consists of a large number of varieties which differ from one another in all sorts of characters, including the extent and distribution of the roots. The root systems of the varieties are just as characteristic and just as fixed as the differences in the seed and other aboveground characters of these plants. A similar state of affairs obtains in other crops like wheat . . . and the opium poppy, and is probably universal all over India.

  Thus the differences between the root systems of varieties have been clearly shown and the economic significance illustrated.

  Vegetable growing is an important phase of agriculture and one that is increasing at a rapid rate. In the United States practically every kind of soil is used for growing vegetables. Among the dozens or sometimes hundreds of varieties of the various vegetable crops, some undoubtedly have root systems more suited to a given soil environment than others. If the highest possible production is desired, attention should be given to selecting the variety that is not only climatically adapted but also best fitted to a particular soil, modified as favorably as lies within the power of the grower. It seems certain that a large part of the success in connection with the improvement of varieties consists in better adapting the absorbing system to the soil. As stated by one who has extensively worked on plant selection, breeding, root investigations, and other phases of agronomic science, "The more I learn about cultivated plants the more I am convinced that the future lies in the root-soils relation and in matters which influence it." 60

  An intimate knowledge of the habits of growth of the root systems of vegetable crops will enable the grower to space plants to better advantage. It should also permit him to intercrop or grow in succession such crops or mixtures that the soil volume will have a better distribution of roots and thus permit of methods of more intensive cultivation. Similarly, by means of proper crop rotations and occasionally cultivating very deeply rooting crops, the subsoil may be kept in good condition and the effects of drought mitigated. 126

  Interrelations of Plant, Soil, and Climate.--In considering the importance of root relations in crop production, it should be clearly kept in mind that the plant, the soil, and the climate form a closely interlocking system of which no part should be overlooked or overemphasized. It is now rather generally recognized that climate and vegetation are the most important factors determining the character of the mature soil. 148 "The features assumed by the soil in its development from infancy, through youth, maturity, and old age, vary with the environment, especially with the climate and the vegetation." 102 The effect of both climate and soil on the growth of aboveground plant parts has long been known. It has only recently been clearly demonstrated that the environmental factors which affect the root are not only those of the soil immediately about it but also those affecting the shoot which is rightly a part of the complex. Through the shoot the root system is influenced by the aerial environment. 23,103 The amount of light or the degree of humidity, temperature, etc. and the effect of these upon food manufacture, water loss, and other activities affect root development. In fact there is a rather close correlation between shoot and root development. Whatever affects the aboveground growth of plants whether favorably or unfavorably is, in turn, very likely to exert an influence upon root development. 171

  The complex relationship of plant, soil, and climate may be further illustrated in the use of fertilizers. They modify the habit of growth as well as the composition of the plant. For example, phosphates, when applied to soil upon which wheat or certain root crops are grown, promote deeper root penetration. This results in a greater water and nutrient supply for the plant. Earlier development and ripening may be promoted or drought mitigated. Soils thus fertilized will produce crops under an environment perhaps otherwise quite unfavorable. Vegetable production should be studied from the point of view of how roots and shoots of plants grow, and use should be made of the plant itself for indicating the direction of future research.

  An adequate discussion of the environment of roots (the soil), how roots are built to perform their work, and root habits in relation to crop production has been so recently given in "Root Development of Field Crops" that further statement seems unnecessary. For a general discussion of the effects of irrigation, drainage, water content, aeration, temperature, nutrients, tillage practice, plant disease, and related phenomena upon root habit and their significance in crop production, the reader is referred to the same volume.

  Activities of Roots in Subsoil.--The great extent of the root systems of most vegetable crops and their usual thorough occupancy of the subsoil may at once arouse interest concerning the importance of the deeper soil layers. Experiments have shown that the roots of crops are active in the absorption of both water and nutrients even to the maximum depth of penetration. 174,165 Nutrients, when available, are taken from the deeper soils in considerable quantities, although to a lesser extent than from the soil nearer the surface which the roots occupy first and, consequently, at least in annual crops, where they absorb for the longest time. The deeper portions of the root system are often particularly active as the crop approaches maturity. Nutrients absorbed by them may produce a pronounced effect both upon the quantity and the quality of the crop yield. 30

  Method of Root Study.--In the present studies the direct method of root examination has been employed. It has been used by the writer and his coworkers in the excavation of hundred of root systems during the past 14 years and has proved very satisfactory. By the side of the plants to, be examined, a long trench is dug to a depth of about 5 feet and of convenient width. This affords an open face into which one may dig with hand pick and ice pick and thus uncover and make a careful examination of the entire root system. This apparently simple process, however, requires much practice, not a little patience, and wide experience with soil structure. In every case several plants were examined at each stage of development to insure an adequate idea of the general root habit. As the work of excavation progressed, the trench was deepened, if necessary, so that finally the soil underlying the deepest roots was removed. Frequently, the trenches reached depths of 6 to 11 feet (Fig. 2).


Fig. 2.--Trench used in the study of root systems. In this case 3-year-old trees were being excavated. They did not extend deeper (5 to 8 feet), however, than many vegetable crops of a single season's growth.

  Upon excavating the roots, detailed notes and careful measurements were made in the field. After several plants were examined, these notes were studied and any point that remained indefinite was at once clarified by further study. This method leads to a high degree of accuracy. Drawings of the root systems were made in the field on a large drawing sheet with pencil and later retraced with India ink. They were made simultaneously with the excavation of the roots and always by exact measurements. In the drawings the roots are arranged as nearly as possible in a vertical plane; that is, each root is placed in its natural position with reference to the surface of the soil and a vertical line from the base of the plant. In some cases the drawings represent the roots in their natural position in the surface foot of soil. In every case it was sought to illustrate the average condition of root development rather than the extreme. Although the drawings were made on a large scale, the rootlets were often so abundant that it was quite impossible to show the total number. Such drawings, however, carefully executed, represent the extent, position, and minute branching of the root system even more accurately than a photograph, for under the most favorable conditions, especially with extensive root systems, the photograph is always made at the expense of detail, many of the finer branches and root ends being obscured.

CONDITIONS FOR GROWTH AT LINCOLN, NEB.

  Since roots, like aboveground parts of plants, are greatly modified by environment, a brief statement will be given of the conditions under which the crops were grown.

  Soils.--The vegetable crops at Lincoln were grown in a fertile, dark-brown, Carrington silt loam. Preceding them white clover had been raised for 2 years. This was followed by a crop of maize. The soil was not only in an excellent condition as regards tilth but also was well supplied with humus. In general, it may be said that the soils of eastern Nebraska have a sufficient supply of all the essential nutrients to insure good crop yields, except that, owing to the systems of cropping, there may be a deficiency in available nitrates. The area was only slightly rolling, the general slope being toward the south. As usual, some differences in soil texture were found in excavating the root systems in different parts of the area. The following description of the soil profile represents an average condition.

  The surface 12 to 14 inches was a mellow, very dark silt loam from which the roots were readily removed. At greater depths it intergraded into a dark-colored, clay subsoil. This became quite sticky when wet and hard when dry. It exhibited a columnar or jointed structure, especially below 18 inches, cracking badly when it shrank upon drying. Roots were removed with much more difficulty from this soil layer. At about 3 feet in depth the subsoil became much lighter yellow in color and graded rather abruptly into an easily worked, quite mellow, friable soil type approaching loess in many of its physical properties. This extended beyond the depth of greatest root penetration, i.e., over 12 feet. It was characterized by rusty streaks and numerous small calcareous areas and concretions. Earthworm burrows penetrated the soil to depths of 8 feet or more and numerous old-root channels extended almost as deeply. In many places extensive surface cracks reached depths of 4 to 5 feet. They were sometimes 1 inch in width. These crevices had been formed during past years of drought and were filled with rich, black, surface soil which had been washed or blown into them. Cultural operations in a large measure had also undoubtedly contributed to the filling.

   Mechanical analyses of the soil at the several depths to 5 feet, together with the hygroscopic coefficients are given in Table 1.

TABLE 1.--MECHANICAL ANALYSES AND HYGROSCOPIC COEFFICIENTS OF
          SOIL FROM LINCOLN, NEB.

Depth   Fine   Coarse  Medium   Fine   Very                 Hygro-
 Of     gravel  sand,   sand    sand   fine   Silt   Clay   scopic
Sample,  per    per     per     per    sand   per    per    coeffi-
 Feet   cent    cent    cent    cent   per    cent   cent   cient
                                       cent

0-0.5   0.00    0.21    0.20    0.73   29.54  34.44  34.86  11.6
0.5-1   0.00    0.15    0.17    0.55   32.21  29.24  37.66  13.8
1-2     0.00    0.05    0.07    0.26   22.15  30.66  46.80  16.1
2-3     0.00    0.02    0.04    0.16   19.56  31.01  49.20  17.1
3-4     0.00    0.00    0.02    0.09   22.18  33.57  44.18  14.7
4-5     0.22    0.10    0.06    0.17   24.73  37.35  37.36  14.2

  The fine texture of the soil is reflected in the rather high hygroscopic coefficients at the several depths. This, of course, denotes also a high water-holding capacity.

  Number and Size of Plats.--The crops, in nearly all cases, were grown in triplicate plats so that early, midsummer, and later examinations could be made without disturbing the areas in which the plants were to make further growth. The plats, although somewhat variable in size, were in all cases large enough to permit of normal field development, each group of plants being entirely surrounded by plants of its kind. For example, the plats of lettuce, radishes, and onions were 12 feet long and 10 feet wide, the plants in the central portion of each plat being used for a single root study. In the case of the tomato, cabbage, eggplant, and other crops where each plant occupied considerable space, the plats were proportionately larger so that the plants examined were grown under the ordinary competitive conditions and mutual environment of garden crops.

  Tillage.--The field was plowed 8 inches deep early in the spring after all cornstalks, stubble, and dried weeds had been carefully removed. This was followed by repeated harrowing until an excellent, firmly compacted, moist seed bed of good soil structure was formed. On areas not immediately planted, weeds were removed by raking and hoeing. After the seeds were sown or the seedlings transplanted, further cultivation was done very shallowly with rake or hoe so as not to disturb the roots. Cultivation and weeding were repeated, as in ordinary gardening, when needed to prevent the growth of weeds and to keep the surface soil in a good condition of tilth. At no time did cultivation extend to greater depths than 1 inch.

  Precipitation.--The rainfall of 19.2 inches during the 6 months of the growing season was 2.3 inches below the normal, with periods of moderate drought occurring in May and again in July.

   April with a deficiency of 1.2 inches had three well-distributed showers. In May efficient rains occurred on the eighth and fifteenth, with a monthly deficiency of 3 inches. June was a wet month with a total of 6.6 inches of precipitation, mostly in seven well-distributed rains. This was 2.3 inches above the mean. July had four rains during the latter half of the month and a total precipitation 1.8 inches below the mean. Five well-distributed showers fell in August, an excess of 1.2 over the mean. September had only 0.2 inch above normal, the rains also being well distributed.

   As a whole the growing season was typical for eastern Nebraska. The spring was cool, frost occurring until about May 12.

  Soil Moisture.-It is a well-established fact that rainfall is only a very general indicator of soil moisture, since many other factors both climatic and edaphic intervene between precipitation and water available for plant growth. Hence, a study of the soil moisture in several of the plats was made from time to time throughout the growing season. Ideally this should have included determinations for each kind of crop at frequent intervals. Owing to the laborious task of excavating roots this was not attempted.

TABLE 2.--APPROXIMATE AVAILABLE SOIL MOISTURE, i.e., AMOUNT ABOVE
          THE HYGROSCOPIC COEFFICIENT, IN THE SEVERAL PLATS DURING
          THE GROWTH OF THE CROPS, 1925

                   Cabbage                     Beets
Depth,
feet      May   June   June   Aug.     May   June   June   Aug.
          29     10     24     4       29     10     30    13

0.0-0.5   7.6   5.4   13.1   12.5     13.0   8.8   14.9   17.5
0.5-4.0   9.0   8.0   12.5    3.4     12.5  10.2   12.6   12.8
1-2      12.3   8.9   10.4    4.0     10.0   8.0   10.4    1.6
2-3       7.5   7.2    9.3    2.9      5.6   3.8    9.7    1.0
3-4             9.6    7.7    4.0            3.9   10.0    2.1
4-5                    9.0                         11.6    2.6
5-6                                                        6.7
6-7                                                        9.0
  
         June                July                 Aug.
          17      July 13     25     Aug. 22      29     Oct. 5
Depth,
feet            Let-   Rad-  Sweet Sweet   Cu-   Ruta-  Ruta- Pars-
         Peas   tuce   ish   corn  corn    cum-  baga   baga   nip
                                           ber      
0.0-0.5  18.8   2.4    3.8   0.3   12.4   18.1   1.6    5.2   12.3
0.5-4.0  13.5   5.4    7.5   0.4   10.7   14.8   0.3    4.0    9.7
1-2       7.1   6.9    8.3   2.1    4.7   12.4   0.7    4.5    8.0
2-3       4.2   8.4    8.3   2.4    2.4    9.3   2.7    2.4    6.9
3-4       4.2   9.1    7.9   3.4    3.4    7.1   2.5    2.2    5.0
4-5            10.5   11.7   4.3    3.8                11.4
5-6                                                    17.4

  An examination of Table 2 shows that in both the cabbage and beet plats sufficient water was available until the middle of August to promote a good growth. On July 25 sweet corn, which uses water in large amounts, had rather thoroughly depleted its supply of soil moisture, especially in the surface soil, but later in the season sufficient water was again present to promote normal development. Differences in the degree of soil-moisture depletion by the various crops will be discussed when the root habits of the crops are considered.

  Temperature.--The temperature of the air is an important factor not only directly in promoting metabolic processes but especially in connection with root studies in modifying humidity and affecting transpiration. The amount of water lost from the aboveground parts reflects itself in the development and extent of the absorbing organs.

  Table 3 gives the average day temperatures (6 a.m. to 6 p.m., inclusive) for the several weeks. These data were obtained in the usual manner from the records of a thermograph placed in an appropriate shelter in the field. It records the shade temperature at a height of 5 inches from the soil surface. The average daily (24-hour) temperatures are also included. Except for a few extremely hot days, temperatures throughout were very favorable for growth.

TABLE 3.--AIR TEMPERATURES IN DEGREES FAHRENHEIT DURING 1925

Week ending    May   May   May  June  June  June  June  July
               13    20    27    3     10    17    24    1
Average day   57.3  61.9  67.9  78.0  80.0  81.5  82.8 77.3
Average daily 49.5  57.5  60.0  74.6  74.3  77.9  78.7 72.1

Week ending  July  July   July  July  Aug.  Aug.  Aug.  Aug.
              8     15     22    29    5    12     19    25
Average day   88.4  90.1  82.0  78.2  74.0  77.4  81.2  79.4
Average daily 82.5  84.5  76.0  74.1  64.8  73.2  76.8  74.8

  A continuous record of soil temperatures at a depth of 6 inches was obtained from May 16 to Aug. 25. During May the temperature ranged between 58 and 82°F., except on May 17 when a temperature of 50°F. was reached. The daily variation never exceeded 15°F. and was usually about 10°F. In June a variation from 62 to 90°F. was found, although the daily range did not usually exceed 12°F. But on one day a range of 19°F. was recorded. The soil at this depth was warmest at 6 p.m. and coldest at 8 a.m. This condition held throughout the summer. It represented a lag of nearly 4 hours behind the maximum and minimum air temperatures, respectively. Throughout July the temperature varied between 65 and 94°F. The daily range was usually through 15°F. (maximum, 18°F.), the highest and lowest temperatures occurring as in June. In August a temperature range from 61 to 89°F. was found, the daily range being slightly greater than for July.

  The soil above 6 inches was not only much warmer at. times but also subject to greater temperature fluctuations than at greater depths. Thus roots lying close to the surface of the soil were subject to the influence of an environment which was quite different from that affecting those growing more deeply. It seems probable that surface-soil temperatures never became so high as to be injurious to root growth but that the absence of roots or their death in the shallowest soil was due to lack of a sufficient supply of moisture. 15,174 Soil temperatures are also of great importance because of their relation to disease-producing organisms that may greatly limit successful crop production. 170

  Humidity.--The loss of water through transpiration is directly controlled in a large measure by the amount of moisture already in the air. This is also an important factor governing the evaporation of water directly from the surface soil. Consequently, a record of relative humidity was obtained by means of a hygrograph appropriately sheltered with the recording apparatus about 5 inches above the soil surface. Table 4 gives the average day humidity (6 a.m. to 6 p.m., inclusive) and the average daily humidity (24 hours) for the several weeks from May 13 to Aug. 25.

TABLE 4.--RELATIVE HUMIDITY IN PER CENT, 1925

Week ending   May    May    May   June   June   June    June
              13     20     27      3     10     17       24
Average day   56.9   58.9   44.0   59.5   53.5   67.5   74.8
Average daily 65.0   67.0   55.2   65.2   62.0   75.8   81.6
 
Week ending   July   July   July   July   Aug.   Aug.   Aug.   Aug.
               1      15     22     29     5      12     19     25
Average day   54.7   51.8   41.7   54.2   53.1   70.2   56.7   54.8
Average daily 66.4   61.6   55.6   63.1   63.8   78.6   67.3   63.1

  The rather low relative humidities promoted high rates of transpiration, which in turn undoubtedly stimulated an active growth of roots.

  Evaporation.--Evaporation was measured by Livingston's standardized, non-absorbing, white, cylindrical atmometers. These were placed in a bare area in the field with the evaporating surface at a height of 2 to 4 inches above the surface of the soil.

  Table 5 gives the average daily evaporation by weeks from Apr. 16 to Aug. 29. These data clearly show that during the last half of May and periods in June and July the evaporation was quite high.

TABLE 5.--AVERAGE DAILY EVAPORATION IN CUBIC CENTIMETERS, 1925

May   May 30- June   Jun 24- July   July   Jul 29-  Aug    Aug    Aug 
16-30 Jun 17  17-24  Jul 11  11-22  22-29   Aug 5   5-12  12-25  25-29
43.7   32.0    22.0  43.5    43.7   35.5    31.5    19.3   25.4   35.0

CONDITIONS FOR GROWTH AT NORMAN, OKLA.

  The greater portion of root studies in Oklahoma was made during 1926. Some work was also done the preceding growing season and the root growth of several crops was followed during the intervening winter. Where root excavations were made in Oklahoma this is so stated in the text.

  Soil.--The crops were grown in a fine sandy loam soil that had been heavily manured for a number of years and used for growing vegetables. It was in excellent condition as regards tilth and amount of humus. The area was level and the soil quite uniform throughout. The surface foot had a reddish-brown color, was quite sandy in texture but rather compact, and contained enough clay to exhibit a tendency to bake when it dried after heavy rains. In the second foot it was a light-chocoIate brown and contained more clay. When dry, it became quite hard, especially at a depth of 18 to 24 inches. The greater sand and smaller clay content of the soil prevented it from cracking and. fissuring as did the soil at Lincoln. This, as will be shown, had a marked effect upon general root habit and branching. Roots penetrated the 18- to 24-inch soil layer with some difficulty, especially when it was rather dry. This was shown by their tortuous courses. The third foot consisted of a reddish-yellow sandy clay. It contained numerous, small, black concretions of iron 1 to 2 millimeters in diameter. After long periods of drought it became very hard. The next 18 inches were much sandier and had more and larger concretions but showed no change in color. At greater depths the soil became still sandier, was mottled with reddish-brown spots, and contained many concretions. At 7 to 8 feet it was very compact. Table 6 shows the sizes and proportions of the various soil particles at the several depths together with the hygroscopic coefficients.

TABLE 6.--MECHANICAL ANALYSES AND HYGROSCOPIC COEFFICIENTS OF
          SOIL FROM NORMAN, OKLA.

Depth    Fine   Coarse  Medium   Fine   Very                 Hygro-
 Of      gravel  sand,   sand    sand   fine   Silt   Clay   scopic
Sample,   per    per     per     per    sand   per    per    coeffi-
 Feet    cent    cent    cent    cent   per    cent   cent   cient
                                       cent

0.0-0.5  0.00   0.66   2.28   14.01   47.14   19.84   16.07   5.2
0.5-1.0  0.00   0.65   1.70    7.54   47.14   22.50   20.46   6.7
1-2      0.00   0.55   1.97    8.66   41.56   19.59   27.67   8.5
2-3      0.00   0.41   1.35    6.55   29.45   27.96   34.26   9.7
3-4      0.00   0.61   2.42   12.05   33.78   20.96   30.16   9.2
4-5      0.00   1.07   3.66   16.33   36.67   12.96   29.30   8.9
5-6      0.00   1.08   3.94   18.31   36.30   13.39   26.97   8.5

  Method of Planting and Tillage.--The field was plowed to a depth of 8 inches late in March. Repeated disking and harrowing resulted in a good, compact seed bed. All of the crops were planted by hand, each in four to eight rows, 3.5 feet apart in order to permit of cultivation with a horse-drawn harrow. Shallow cultivation was given after each rain to prevent the formation of a surface crust and also to kill weed seedlings. A mulching fork, supplemented by a hoe when necessary, was used near the plants. In this manner a surface mulch 1 to 1.5 inches deep was maintained but in no case was a cultivation deeper. A good supply of moisture was present just below the mulch during almost the entire growing season.

  Precipitation.--The rainfall of 11.5 inches during the period when the crops were grown (April to July, inclusive) was 3.6 inches below the mean.

   April with 1.9 inches had a deficiency of 1.3 inches and no efficient rainfall after the tenth. May had 2.3 inches which was somewhat (3.1 inches) below the normal amount. No efficient rain fell between May 8 and 30. During June precipitation was 1.6 inches less than the mean. A precipitation of 2.2 inches, however, was fairly well distributed throughout the month. July had 5.1 inches rainfall, 2.4 inches above the mean, little moisture falling after the thirteenth.

  Soil Moisture.--Notwithstanding the rather limited rainfall, a good supply of water was present throughout the entire growing season. The fine sandy loam soil of the level field, loose from the cultivation of the previous season, had been thoroughly wet by the fall and winter rains. Water had entered the deeper subsoil and moistened it beyond the depth of greatest root penetration. Most of this water was retained in the spring and supplemented by rains in March. Thus, although the summer rainfall was light, a good supply of moisture was present throughout the entire growing season.

  Since soil samples were taken from the middle of the area between the rows, the earlier determinations represent the total available moisture. Later the widely spreading roots extended into these areas and the water supply was considerably reduced (Table 7).

TABLE 7.--AVERAGE APPROXIMATE AVAILABLE SOIL MOISTURE, i.e., 
          AMOUNT ABOVE THE HYGROSCOPIC COEFFICIENT, IN THE 
          PEPPER AND SWISS CHARD PLATS AT NORMAN, OKLA., 1926

        0.0 to 0.5   0.5 to 1.0   1 to 2   2 to 3   3 to 4
Date       foot         foot       feet     feet     feet

Mar. 11     8.6        11.5        10.5     5.3      7.8
Mar. 18    10.6        12.2        10.1     7.5      8.3
Mar. 25    10.2        10.4         9.0     7.8      7.6
Apr. 1     14.6        15.5        12.3     9.0      7.7
Apr. 8     11.6        13.3        10.7     8.9      8.7
Apr. 15    13.9        13.9        12.2    10.3      9.5
Apr. 22    10.9        11.0        11.2     9.6     10.3
Apr. 29     9.8        12.3        10.1     9.0     10.1
May 6      13.6        14.0        11.9    10.5      9.9
May 13     14.5        14.0        11.5     7.2     10.6
May 20     10.1        12.9        10.8     9.8      9.3
May 27     15.3        10.6        10.3     9.4     10.2
June 3      9.4        11.2        10.6     9.5      9.3
June 10     3.5         7.2         5.7     7.8      7.9
June 17     6.4        13.5        10.7    10.5     10.3
June 24     8.9        11.3         9.9     9.3      9.4
July 1      7.0         6.5         9.0     7.0      8.7
July 8     12.1         7.1         8.1     6.2      7.3
July 15     8.0         4.0         8.0     5.4      7.7
July 22     4.3         3.4         5.9     5.3      8.1

  An examination of Table 7 shows that the soil was moist when the crops were planted and that sufficient water was available at all times to promote a good growth. That conditions of soil moisture in the plats of pepper and Swiss chard were representative for the crops as a whole was shown by frequent soil sampling among the roots of other vegetables. In nearly every case very similar results were obtained. This, however, was to be expected, since the root habits of both pepper and Swiss chard are representative and their aboveground transpiring parts moderately extensive. The excellent moisture content in the surface 6 inches was undoubtedly in part due to the soil mulch preserved at all times.

  Other Factors.--Another factor favorable to moisture conservation was a very cool, late spring. Warm weather did not begin until the second week in April. The surface soil warmed rapidly, there was enough moisture to promote prompt germination and vigorous growth, and the crops made excellent progress even under a light precipitation. The usual drought and high temperatures of July were replaced by a relatively cool, moist midsummer during which the plants made a continuous growth. The average day temperatures (6 a.m. to 6 p.m., inclusive) and the average daily temperatures (24 hours), obtained by means of a thermograph placed in the field as at Lincoln, are shown in Table 8.

TABLE 8.--AIR TEMPERATURES IN DEGREES FAHRENHEIT, AND AVERAGE
          DAILY EVAPORATION IN CUBIC CENTIMETERS AT NORMAN, OKLA., 1926
   
Week ending       March       April                         May     
                  18    25    1     8     15    22    29    6     13
Average day    
  temperature     53.3  60.3  40.6  52.4  50.0  61.4  72.6  77.7  72.2  
Average daily
  temperature     48.8  55.0  38.5  47.4  46.9  56.9  65.0  69.9  67.6
Evaporation             26.6  10.2         7.0  21.7  39.1  29.1  24.8

Week ending       May         June                    July
                  20    27    3     10    17    24    1     8     15    22
Average day
  temperature     84.8  90.0  83.8  86.4  85.4  80.6  86.8  94.6  86.5  86.2
Average daily
  temperature     76.8  87.9  78.8  79.3  79.7  75.3  79.1  89.8  82.1  81.8
Evaporation       39.1  46.4   26.1 41.7  48.0  17.3  29.0  51.4  22.7  31. 0

  The average daily evaporation from porous-cup atmometers, similar to those used at Lincoln, is also shown in Table 8. The atmometers were placed in an uncropped area with the evaporating surface 6 to 9 inches above the ground. An examination of these data shows that during two or three periods, occurring in May, June, and July, evaporation was very high. This also indicates conditions for high transpiration. The response was shown in deeply penetrating and widely spreading root systems to be described in the following chapters.

  Conditions for Growth during the Fall and Winter.--The root development of certain crops was studied during the preceding fall and winter.' Following a dry, late summer in 1925, September was warm and had an abundance of moisture (5.4 inches).

  During this period many long-lived vegetable crops showed a vigorous, renewed growth. Growth was continued, especially by the hardier plants, during an unusually cool October. Owing to favorable soil moisture and rather uniformly moderate temperatures during November and December, growth in several crops slowly continued. Following the cessation of growth in January, renewal of the development of both roots and tops was resumed during February which had a temperature of 8.2°F. above the mean.

  The average day temperatures (8 a.m. to 6 p.m., inclusive) and average daily temperatures for the entire period, secured by a thermograph placed in the field, are shown in Table 9. Here also are included isolated readings of the soil temperature at a depth of 6 inches, as well as the precipitation. The reader may wish to refer to these environmental conditions when studying the root development of the several crops, the description of which will now be taken up.

TABLE 9.--CONDITIONS FOR GROWTH DURING FALL AND WINTER,
          1925, 1926, AT NORMAN, OKLA.

Week ending                       August               September               October
                                  13     20     27     3      10     17     24     1      8
Average day temperature,
   degrees Fahrenheit             79.3   84.7   79.1   81.4   85.8   60.1   81.4   76.1   67.6
Average daily temperature,
   degrees Fahrenheit             75.6   79.7   76.0   75.8   78.7   55.1   77.5   71.8   63.4
Soil temperature, depth 6 inches,
   degrees Fahrenheit             82     84     84     86     84     65     79     72     71
Total precipitation, inches       0.90   0.00   0.00   0.00   1.00   5.25   1.49   1.16   1.79
Week ending October November December 15 22 29 5 12 19 26 3 10 17 Average day temperature, degrees Fahrenheit 58.5 58.7 48.2 50.8 53.3 56.6 55.5 54.7 48.9 51.0 Average daily temperature, degrees Fahrenheit 56.1 55.6 41.1 46.5 47.9 45.3 48.5 49.1 43.3 44.6 Soil temperature, depth 6 inches, degrees Fahrenheit. 67 62 60 61 60 62 60 57 50 47 Total precipitation, inches... 0.45 0.24 0.00 0.08 2.01 0.04 0.03 0.00 0.29 0.00
Week ending December January February 24 31 7 14 21 28 4 11 18 25 Average day temperature, degrees Fahrenheit 37.4 39.8 33.3 42.6 52.0 46.1 56.3 47.2 47.7 55.7 Average daily temperature, degrees Fahrenheit 32.4 33.3 29.9 38.1 47.0 41.0 48.7 40.6 41.4 47.9 Soil temperature, depth 6 inches, degrees Fahrenheit 44 38 34 36 43 43 54 48 49 52 Total precipitation, inches 0.00 0.00 0.00 0.00 0.00 0 00 0.00 0.00 0.07 0.09


HOME   AG LIBRARY CATALOG   TABLE OF CONTENTS   NEXT CHAPTER